
www.manaraa.com

Cognitive impairment after focal brain lesions is better
predicted by damage to structural than functional
network hubs
Justin Rebera,b,1, Kai Hwangc, Mark Bowrenb,c

, Joel Brussb, Pratik Mukherjeed, Daniel Tranelb,
and Aaron D. Boesa,b,e

aDepartment of Psychiatry, Carver College of Medicine, Iowa City, IA 52242; bDepartment of Neurology (Division of Neuropsychology and Cognitive
Neuroscience), Carver College of Medicine, Iowa City, IA, 52242; cDepartment of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242;
dDepartment of Radiology and Bioengineering, University of California, San Francisco, CA 94143; and eDepartment of Pediatrics, Carver College of
Medicine, Iowa City, IA 52242

Edited by Maurizio Corbetta, University of Padua, Padova, Italy, and accepted by Editorial Board Member Michael S. Gazzaniga March 19, 2021 (received for
review September 5, 2020)

Hubs are highly connected brain regions important for coordinat-
ing processing in brain networks. It is unclear, however, which
measures of network “hubness” are most useful in identifying
brain regions critical to human cognition. We tested how closely
two measures of hubness—edge density and participation coeffi-
cient, derived from white and gray matter, respectively—were as-
sociated with general cognitive impairment after brain damage in
two large cohorts of patients with focal brain lesions (N = 402 and
102, respectively) using cognitive tests spanning multiple cognitive
domains. Lesions disrupting white matter regions with high edge
density were associated with cognitive impairment, whereas le-
sions damaging gray matter regions with high participation coef-
ficient had a weaker, less consistent association with cognitive
outcomes. Similar results were observed with six other gray mat-
ter hubness measures. This suggests that damage to densely con-
nected white matter regions is more cognitively impairing than
similar damage to gray matter hubs, helping to explain interindi-
vidual differences in cognitive outcomes after brain damage.

participation coefficient | edge density | structural connectivity | functional
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The importance of different brain regions in supporting large-
scale brain networks is not uniformly distributed. Hub re-

gions are especially critical in forming a backbone of global
network architecture and, by extension, are thought to be critical
in supporting human cognition. However, there are competing
ideas regarding what measures of “hubness” are most relevant
for cognition (1, 2). Much of the evidence linking structural and
functional hubs to cognition is correlational in nature, showing
associations of imaging measures with task performance in
healthy participants (3). While informative, it is difficult to draw
causal inferences from these studies. As such, studies of neuro-
logical patients with focal pathology have been helpful in further
clarifying the role of network hubs in cognition (4–7).
Influential studies have shown that focal brain damage in-

volving network hubs causes widespread changes in brain net-
works (8–10). In addition, some studies have related hub damage
with cognitive impairment, either in a single domain (7, 11) or
spanning multiple cognitive domains (6, 12). These studies have
largely focused on either gray matter measures (6) or white
matter measures of hubness (13) but have not compared the two.
Here, we aim to extend this line of research by quantifying the
degree to which individuals’ focal brain lesions map onto both
functional and structural network measures of hubness in two
large cohorts. We focus on two well-established network metrics,
participation coefficient and edge density—derived from gray
and white matter, respectively—to test the association of these
network measures with general cognitive performance.

Participation coefficient describes the involvement of a brain
region within multiple brain systems. It is often considered the
preferred measure of “hubness” in networks derived from cor-
related patterns of brain activity, including those derived from
resting state functional connectivity MRI (8). Regions with
higher participation coefficient are thought to be important for
integrating and coordinating processing between networks, a
feature that may be important for general cognitive processes
(14–16). For instance, Warren and colleagues (6) assessed the
postlesion performance of 30 patients with focal damage to re-
gions either high or low in participation coefficient, derived from
normative functional connectivity MRI data. Patients with le-
sions in high participation coefficient regions showed broad
cognitive impairments in multiple domains, beyond what was
expected by clinicians based on lesion location alone (6, 17).
Alternatively, regions with a high density of white matter

connections also form structural network hubs, as these regions
are critical for facilitating the flow of information in brain net-
works. Edge density provides an important metric of this kind of
structural hubness, indexing the number of white matter con-
nectome edges that link gray matter regions on a voxel-wise basis
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(18). Introducing lesions to regions high in edge density in the
posterior periventricular white matter was disruptive to distrib-
uted brain networks in simulated lesion analyses (19, 20), but this
has yet to be tested with data from patients with brain lesions.
The relative importance of these gray and white matter net-

work measures in identifying brain regions important for human
cognition is unclear. Lesion studies that have looked at this topic
have relatively small sample sizes and focus on gray or white
matter network measures, but not both. There is some evidence
to suggest, however, that white matter network metrics might be
more predictive of cognitive outcomes than those derived from
gray matter (13, 21–23). For instance, a study by Griffis and
colleagues (7) found that damage to white matter “bottlenecks”
underlying the temporal lobe was more predictive of language
impairment than damage to canonical cortical regions involved
in language. However, a systematic evaluation that evaluates
both structural and functional network hubness measures as they
relate to cognitive outcomes is needed to further evaluate the
relative importance of each.
Here, we extend this line of investigation by evaluating the

real-world functional importance of different types of structural
and functional network hubs based on their association with
cognitive impairment following focal brain lesions. In two large
cohorts of individuals with focal, acquired brain lesions (N = 402
and 102), we estimated the degree to which the brain lesions
disrupt brain networks based on the extent of the lesion’s overlap
with population-derived, brain-wide maps of edge density and
participation coefficient. We estimated general cognition in each
subject based on shared variance in a structural equation model
among 17 neuropsychological tests spanning different domains
of cognition. Based on the evidence reviewed above, we hy-
pothesized that greater cognitive deficits would be seen in as-
sociation with 1) lesions of gray matter regions that participate in
multiple networks (represented as higher participation coeffi-
cient), 2) lesions of densely connected white matter (represented
as higher edge density), and 3) a regression model combining
edge density and participation coefficient would provide a stronger
prediction than either measure alone, with edge density explaining
more variance in cognitive outcomes relative to participation coef-
ficient (8, 9, 21). Prior to conducting any analyses, we preregistered
these three main hypotheses and the proposed analytic approach on
the Open Science Framework (OSF) (https://osf.io/kpc2b/?view_
only=a38cd1e09a4f4735b02cb36955c3f933).

Results
Lesions of Densely Connected White Matter Predicts Greater Cognitive
Impairment. The relationship between the location of each pa-
tient’s lesion relative to the edge density and participation coef-
ficient maps was investigated using three hierarchical regression
models. This served as the main analysis and test of the prereg-
istered hypotheses. These results are reported in detail in Table 1.
On the first step of each of the three models, lesion volume was a
significant predictor of cognitive outcome, with larger lesions
associated with greater cognitive impairment (β = −0.193, ΔR2 =
0.037, P < 0.001). Lesion volume was log-transformed to reduce
a positive skew and avoid problems with multicollinearity with
the other variables. The main hypotheses were tested in the
second step of the regression models. The first model was the
most comprehensive and included both edge density lesion load
(the sum of all voxel-wise edge density values contained within
each individual lesion) and participation coefficient lesion load
(the sum of all voxel-wise participation coefficient values con-
tained within each individual lesion). The second step of this
regression model significantly improved the predictive variance
(ΔR2 = 0.045, P < 0.001), but only edge density was significantly
associated with cognitive impairment (β = −0.233, P = 0.018),
and participation coefficient lesion load failed to reach signifi-
cance (β = −0.084, P = 0.401).

The regression analysis was repeated, combining lesion vol-
ume with individual lesion load values of either participation
coefficient (model 2) or edge density (model 3). In model 2,
higher participation coefficient lesion load was associated with
greater cognitive impairment, as hypothesized (β = −0.265,
ΔR2 = 0.034, P < 0.001). In model 3, higher edge density was
again associated with greater cognitive impairment, as hypothe-
sized (β = −0.293, ΔR2 = 0.044, P < 0.001). In comparing the
three models, we hypothesized that more variance would be
explained with the first, most comprehensive model relative to
models 2 and 3, but the adjusted R2 in models 1 and 3 was the
same (0.076), suggesting that the inclusion of participation co-
efficient did little to improve the overall model. The results were
similar using the actual lesion volume, without log transformation,
but participation coefficient was no longer significantly associated
with cognitive impairment in step 2 of model 2 (SI Appendix,
Table S1).

Validation in an Independent Sample.Next, we repeated these same
hierarchical regression models in an independent sample col-
lected at Washington University in St. Louis (WU cohort; Ta-
ble 2). These regression analyses mirrored the pattern of results
from the Iowa cohort. For step 1 in each model, larger lesions
were associated with greater cognitive impairment (β = −0.386,
ΔR2 = 0.149, P < 0.001). In contrast to the main analysis, step 2
in models 1 through 3 did not reach statistical significance in
predicting cognitive outcome. Higher edge density lesion load
was associated with greater cognitive impairment similar to the
Iowa sample (model 1 P = 0.025; model 3 P = 0.055, ΔR2 =
0.031), whereas the same association between participation co-
efficient lesion load and cognitive impairment was negligible
(ΔR2 = 0.002, P = 0.661). Edge density did explain significant
variance in cognitive outcome above and beyond lesion volume
when raw lesion volume was used in model 1, while step 2 of
models 2 and 3 did not reach significance (SI Appendix,
Table S2).
As an additional validation method, we evaluated whether the

regression model equations generated from the Iowa data could
be used to predict cognitive performance scores in the WU co-
hort, using their lesion volume and lesion load values as inputs.
The correlation between the predicted and actual scores, as well
as the root mean squared error (RMSE), are reported in SI
Appendix, Table S3. The predicted score was significantly corre-
lated with observed score in each regression model. The statistical
significance was determined using permutation testing—comparing
r values of actual versus randomly generated correlations across
10,000 permutations, with the P value derived from the proportion
of randomly generated correlations greater than the observed
correlation. The only model more predictive than lesion volume
alone was lesion volume + edge density: (lesion volume: r(102) =
0.386, RMSE = 0.938, P < 0.001; edge density + lesion volume:
r(102) = 0.401, RMSE = 0.922, P < 0.001). The inclusion of par-
ticipation coefficient increased the RMSE and reduced the cor-
relation strength of observed and predicted g relative to models
using only lesion volume.

Additional Analyses and Investigating Possible Confounds. The main
analyses partially supported the main hypotheses, with edge
density lesion load predicting a significant amount of the vari-
ance in cognitive outcomes (ΔR2 = 0.044). However, participa-
tion coefficient lesion load was less consistently associated with
cognitive outcomes (ΔR2 = 0.034). While participation coeffi-
cient lesion load was a significant predictor in a stand-alone
regression model using the Iowa data, it did not approach sig-
nificance in models that included edge density from either co-
hort. We performed a number of additional analyses on the Iowa
cohort to further evaluate these findings, including examining
peak edge density and participation coefficient values within
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each lesion and attempting to control for patients’ premorbid
intellect (SI Appendix, Fig. S5). Details of these analyses are
reported in the SI Appendix. Similar to the main analyses, both
analyses found a significant relationship between edge density
and cognitive performance, while participation coefficient did
not significantly predict cognitive performance when edge den-
sity was included in the model (Table 1).
Furthermore, we investigated whether lesions that occur at the

locations in the brain with the highest overall edge density—
MMNI (Montreal Neurological Institute) coordinate (−37, −43,
3)—and highest participation coefficient—the midline cerebel-
lum (2, −62, −24), thalamus (9, −4, 8), and precuneus (−6, −62,
56)—were associated with impaired cognition. Damage to the
edge density peak region was associated with significantly more
cognitive impairment than damage elsewhere (n = 11,
M = −0.604 compared to N = 391;M = 0.017, t(400) = 2.221, P =
0.027). Patients with lesions to the peak participation coefficient
hubs, however, did not significantly differ from those with lesions
to other regions (n = 5, M = −0.692 compared to n = 397,
M = −0.009, t(400) = 1.698, P = 0.090).

Alternative parcellation schemes and normative data sets do not
change results. To test whether the weaker findings for partici-
pation coefficient may be attributed to the parcellation schemes
or the normative dataset used to calculate participation coeffi-
cient, we repeated the analyses with alternative participation
coefficient maps produced using a different parcellation scheme
[Yeo 17 network parcellation of cerebral cortex, basal ganglia,
thalamus, and cerebellum (24, 25, 26)] and two alternative nor-
mative data sets: 62 subjects from the Nathan Kline Institute-
Rockland Sample (NKI) (27) and 100 Human Connectome
Project-related subjects (HCP) (28). Total participation coeffi-
cient lesion load was then recalculated using the same processing
pipeline, and the analyses repeated with the new values. The
results remained largely unchanged by the different parcellation
scheme or the alternative functional connectivity data sets used
to calculate participation coefficient (SI Appendix, Table S4).
We also evaluated whether the higher resolution of the edge

density map relative to the participation coefficient map may
have driven their differences in predictive strength due to the
fact that edge density weights were calculated on a voxel-wise

Table 1. Iowa cohort: Hierarchical linear regressions with lesion volume, edge density load/peak, and participation coefficient
load/peak predicting post-lesion g scores

Step and Variable

95% CI for b

b
Lower
bound

Upper
bound β t p df R2 ΔR2 Sig. ΔF AIC

Raw g Scores
Lesion Load

Model 1 Step 1
Total Lesion Volume (log mm3) −0.119 −0.179 −0.059 −0.193 −3.926 <0.001 400 0.035 0.037 <0.001 −80.006
Step 2
Total Lesion Volume (log mm3) 0.019 −0.067 0.104 0.030 0.429 0.668 398 0.076 0.045 <0.001 −95.439
Edge Density Load −0.214 −0.391 −0.037 −0.233 −2.378 0.018 398 0.076 0.045 <0.001 −95.439
Participation Coefficient Load −0.077 −0.603 0.121 −0.084 −0.841 0.401 398 0.076 0.045 <0.001 −95.439

Model 2 Step 1
Total Lesion Volume (log mm3) −0.120 −0.181 −0.058 −0.188 −3.818 <0.001 396 0.033 0.035 <0.001 −79.304
Step 2
Total Lesion Volume (log mm3) 0.002 −0.086 0.089 0.003 0.037 0.970 395 0.065 0.034 <0.001 −91.498
Participation Coefficient Load −0.243 −0.369 −0.117 −0.265 −3.787 <0.001 395 0.065 0.034 <0.001 −91.498

Model 3 Step 1
Total Lesion Volume (log mm3) −0.119 −0.179 −0.059 −0.193 −3.926 <0.001 400 0.035 0.037 <0.001 −80.006
Step 2
Total Lesion Volume (log mm3) 0.008 −0.074 0.089 0.013 0.187 0.852 399 0.076 0.044 <0.001 −96.725
Edge Density Load −0.269 −0.391 −0.148 −0.293 −4.361 <0.001 399 0.076 0.044 <0.001 −96.725

Lesion Peak Step 1
Total Lesion Volume (log mm3) −0.119 −0.179 −0.059 −0.193 −3.926 <0.001 400 0.035 0.037 <0.001 −80.006
Step 2
Total Lesion Volume (log mm3) −0.038 −0.153 0.076 −0.062 −0.659 0.510 398 0.063 0.033 0.001 −89.901
Lesion Peak Edge Density −0.022 −0.033 −0.010 −0.220 −3.739 <0.001 398 0.063 0.033 0.001 −89.901
Lesion Peak Participation
Coefficient

−0.046 −1.105 1.013 −0.007 −0.085 0.932 398 0.063 0.033 0.001 −89.901

g Scores Controlled for
Crystallized Intelligence

Lesion Load Step 1
Total Lesion Volume (log mm3) −0.092 −0.127 −0.058 −0.255 −5.266 <0.001 400 0.063 0.065 <0.001 −521.118
Step 2
Total Lesion Volume (log mm3) 0.008 −0.040 0.057 0.023 0.341 0.733 398 0.127 0.069 <0.001 −547.870
Edge Density Load −0.138 −0.239 −0.037 −0.256 −2.691 0.007 398 0.127 0.069 <0.001 −547.870
Participation Coefficient Load −0.075 −0.177 0.028 −0.138 −1.430 0.154 398 0.127 0.069 <0.001 −547.870

Lesion Peak Step 1
Total Lesion Volume (log mm3) −0.092 −0.127 −0.058 −0.255 −5.266 <0.001 400 0.063 0.065 <0.001 −521.118
Step 2
Total Lesion Volume (log mm3) −0.079 −0.146 −0.013 −0.219 −2.353 0.019 398 0.081 0.023 0.007 −527.140
Lesion Peak Edge Density −0.010 −0.017 −0.003 −0.174 −2.984 0.003 398 0.081 0.023 0.007 −527.140
Lesion Peak Participation
Coefficient

0.278 −0.337 0.893 0.076 0.889 0.374 398 0.081 0.023 0.007 −527.140

Note: R2 represents adjusted R2. AIC = Akaike Information Criterion. Four patients had lesions that did not intersect with the participation coefficient map
and were thus excluded from Model 2 (n = 402). Bold text indicates variable P < .05.
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basis, and participation coefficient was derived from parcellated
regions containing many voxels. To this end, we recalculated
participation coefficient on a voxel-wise basis, using a 4 mm3

voxel size and down-sampled the edge density map to 4 mm3.
Lesion load and lesion peak values were recalculated for all
patients. These reanalyses did not meaningfully change any of
our results—edge density continued to explain significantly more
variance in cognitive outcomes above and beyond lesion volume.
Participation coefficient was a significant predictor only in those
models that did not include edge density (SI Appendix, Table S5).

Other gray matter network measures are not as predictive as edge
density. There is debate about which gray matter metrics provide
the best estimate of the importance of a region for maintaining
information flow in a functional network. To address the possi-
bility that measures other than participation coefficient may be a
more suitable metric of hubness in association with cognition, we
tested the relationship of six other potential measures of network
centrality derived from functional connectivity MRI: eigenvector
centrality, weighted degree, gateway coefficient, subgraph cen-
trality, within module degree z-score, and community density
(29–33). Each analysis was preregistered as exploratory follow-
up analyses to the main analysis of participation coefficient, with
the postregistration addition of community density (6). Just as
with edge density and participation coefficient, we calculated a
standardized lesion load measure by summing the weight of ev-
ery voxel within each lesion for each network measure. Each
measure in turn was entered into a hierarchical linear regression
on the second step, with lesion volume on the first step as a
covariate. All six measures added significant predictive value
over lesion volume (Table 3). However, when edge density lesion
load was entered into the second step of each model, none of
these measures remained statistically significant.

Discussion
In line with our overall hypothesis, the main finding from these
analyses is that damage to critical white matter regions con-
taining the highest density of structural connections is associated
with worse cognitive outcomes. This finding was robust to mul-
tiple analytic approaches, and the main findings were similar in
an independent sample of patients with focal lesions. The fact
that the regression model derived from the original cohort was

predictive of cognitive outcomes in the second cohort, despite a
different testing epoch (subacute versus chronic) and different
sample demographic characteristics (primarily White partici-
pants in the Iowa cohort, majority Black participants in the WU
cohort), strengthens the generalizability of these findings.
Our second major hypothesis was that the extent to which a

lesion damages functional network hubs as defined by high
participation coefficient would be a significant predictor of
cognitive impairment. This was only weakly supported. Regres-
sion models that included participation coefficient alone were
significant in the Iowa sample but not the WU sample. Relative
to edge density, participation coefficient was more weakly asso-
ciated with cognitive performance when the two were analyzed in
conjunction. Our final hypothesis was that combining edge
density and participation coefficient in a single regression model
would improve upon either variable tested alone. This hypothesis
was not supported, as the addition of participation coefficient
did not explain variance beyond a model with lesion volume and
edge density alone. This unexpected lack of association between
cognitive outcomes and participation coefficient in models that in-
cluded edge density was similar using different normative resting
state functional magnetic resonance imaging (fMRI) data sets, with
different parcellation schemes, or when calculated on a voxel-wise
basis. Furthermore, the results were similar when repeating the same
analysis with six other measures of functional network “hubness”—
eigenvector centrality, gateway centrality, subgraph centrality,
weighted degree, weighted median degree, and community density;
each was significantly associated with cognitive impairment only
when edge density was not included in the model. The predictive
value of these functional network measures increased when esti-
mated premorbid cognitive ability was regressed from cognitive
performance, although not enough to reach statistical significance
in the overall model containing edge density lesion load.
A possible explanation for these findings is that damage to im-

portant white matter tracts is more associated with impairment in
distributed brain functions than damage to gray matter functional
network hubs. Historically, much of the research on human cog-
nition has focused on the cerebral cortex (34). Yet the importance
of white matter for cognition has been highlighted by others. Our
findings are in alignment with prior work that has shown that white
matter lesions disrupt networks measured with functional connec-
tivity MRI (8, 9, 35), cause widespread changes in brain structure

Table 2. WU cohort: Hierarchical linear regressions with log-transformed lesion volume, edge density load, and participation
coefficient load predicting post-lesion g scores

Step and Variable

95% CI for b

b Lower bound Upper bound β t p Df R2 ΔR2 Sig. ΔF AIC

Model 1 Step 1
Total Lesion Volume (log mm3) −0.228 −0.335 −0.120 −0.386 −4.189 <0.001 100 0.141 0.149 <0.001 −13.498
Step 2
Total Lesion Volume (log mm3) −0.145 −0.311 0.022 −0.246 −1.726 0.087 98 0.169 0.044 0.074 −14.906
Edge Density Load −0.421 −0.788 −0.053 −0.421 −2.272 0.025 98 0.169 0.044 0.074 −14.906
Participation Coefficient Load 0.231 −0.137 0.599 0.231 1.244 0.217 98 0.169 0.044 0.074 −14.906

Model 2 Step 1
Total Lesion Volume (log mm3) −0.221 −0.338 −0.104 −0.357 −3.742 <0.001 96 0.118 0.127 <0.001 −10.100
Step 2
Total Lesion Volume (log mm3) −0.191 −0.369 −0.012 −0.309 −2.122 0.036 95 0.111 0.002 0.661 −8.300
Participation Coefficient Load −0.063 −0.350 0.223 −0.064 −0.441 0.661 95 0.111 0.002 0.661 −8.300

Model 3 Step 1
Total Lesion Volume (log mm3) −0.228 −0.335 −0.120 −0.386 −4.189 <0.001 100 0.141 0.149 <0.001 −13.498
Step 2
Total Lesion Volume (log mm3) −0.112 −0.271 0.046 −0.191 −1.406 0.163 99 0.164 0.031 0.055 −15.308
Edge Density Load −0.263 −0.533 0.006 −0.263 −1.941 0.055 99 0.164 0.031 0.055 −15.308

Note: R2 represents adjusted R2. Four patients had lesions that did not intersect with the participation coefficient map and were thus excluded from Model
2 (n = 98).
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(36–38), and are associated with cognitive impairment (7, 13, 21).
Here, we extend these findings, showing that lesions to densely
packed white matter hubs in structural networks are more closely
associated with cognitive deficits than damage to highly connected
gray matter network hubs defined using participation coefficient.
It is important to note that the observed effect size of our

primary model was small, explaining about 7.6% of the variance
in cognitive scores. However, this effect size is consistent with
most other brain-wide correlates of interindividual differences in
domain-general cognition and consistent with the observation
that effect sizes tend to be smaller with larger samples (39). One
of the most robust and replicated biological correlates of cog-
nitive ability to date has been overall brain volume, which ex-
plains about 7.6% of the variance in a sample of >29,000
individuals (40). Lesion volume is also a consistent and robust
correlate of cognitive outcomes (41–44), and our results show
that edge density lesion load outperforms lesion volume in pre-
dicting more variance in cognitive ability when entered inde-
pendently for both samples (Iowa cohort: lesion volume explains
3.5%, edge density 7.9%; WU cohort: lesion volume explains
14.1%, edge density 15.6%). Further, the two are additive such
that edge density predicted significant variance after accounting
for lesion volume (Iowa cohort: 4.4%; WU cohort: 3.1%). Al-
though these percentages are of questionable clinical utility in
isolation, we anticipate future research will begin to combine
these predictive variables to begin to make clinically meaningful
predictions of cognitive outcome after focal brain lesions.
One major strength of this analysis was the large sample size of

patients with focal, acquired brain lesions. This approach of using
patients with focal brain lesions allows for a stronger inference of
brain regions that are critical to cognition, relative to methods that
rely on correlational measures like fMRI. In addition, extensive
neuropsychological testing was conducted in each of the partici-
pants across multiple cognitive domains, and we were able to use
structural equation modeling to derive a robust estimate of cogni-
tive ability that captured variance across individual domains. Fi-
nally, we were able to validate the key findings in an independent
cohort that showed remarkable similarity in results.
There are also limitations to this study. First, our primary

focus was on two network measures, participation coefficient and
edge density, with a follow-up analysis that included six addi-
tional measures. However, we acknowledge that this is not a
comprehensive list. A variety of alternative measures exist, and
each would be of interest for future analyses, but they fell outside
the scope of the current analysis (13, 35, 45, 46). Relatedly, it is
also important to note that edge density and participation co-
efficient are derived differently and a head-to-head comparison
of the two must take this into consideration. For example, they
are derived using different imaging modalities (resting state
functional connectivity and diffusion tractography), and the
spatial resolution of participation coefficient is lower than that of
edge density because it is acquired at a lower resolution and has
a granularity limited to the parcellated brain regions as opposed
to the voxel-wise mapping of edge density. Notably, however,
attempting to match the resolution of edge density and partici-
pation coefficient on a voxel-wise basis did not alter our main
findings. Furthermore, these findings are specifically relevant to
our estimate of general cognitive ability that spans multiple do-
mains. Future analyses focused on how network measures pre-
dict impairment in specific domains will also be important.
Furthermore, although our study employed standard hierarchical
linear models to test for a relationship between hub measures
and cognitive outcomes, future research could also examine this
within a Bayesian framework or use mixed-effect modeling or
machine learning techniques to build more sophisticated pre-
dictive models of postlesion cognitive impairments.
Finally, we used network measures derived from group-

averaged results. It is possible that individualized maps of

participation coefficient or edge density within the lesion site
could be estimated from the healthy hemisphere or from pre-
lesion scans, in rare instances when this is possible, and this
personalization of network metrics may improve the strength of
association between these measures and cognitive outcomes.
The fact that our results did not align fully with those of

Warren and colleagues (6, 17)—who found that patients with
damage to regions high in participation coefficient had worse
cognitive outcomes—may be due to a few factors. First, because
they limited their participants to those with smaller lesions of
cortical regions with high or low participation coefficient, it is
possible that participation coefficient was a better predictor of
cognitive deficits within this more restricted sample, but these
findings don’t generalize as well to a broader sample with lesions
that vary more in volume and are more evenly distributed
throughout the brain. Additionally, their use of expert ratings as
their dependent variable may have been sensitive to information
that was not included in our general cognition calculation or vice
versa. Twenty-three patients from Warren and colleagues’ (6)
sample had adequate neuropsychological testing to calculate a
similar g score, and a t test comparing the g scores of their target
lesion group against their control lesion group was nonsignifi-
cant, (n = 14 versus 8; mean g = −0.21 and 0.37; t (20) = −1.978,
P = 0.063). However, their outcome measures assessed executive
function, personal adjustment/emotional function, and adaptive
function—domains that did not factor into our calculation of
general cognition, which was focused solely on cognitive ability.
It is possible that participation coefficient is associated with
noncognitive domains to a greater extent than it is with our g
construct. Moreover, the patients included in that study were
selected using a combination of participation coefficient and
another measure, community density, and our study evaluated
each measure separately. Finally, it is possible that the particular
hubs that Warren et al. (6) focused on—the anterior insula,
posterior middle frontal gyrus, and anterior medial prefrontal
cortex—are more important to brain function or cognition than
other regions that also have a high participation coefficient.

Future Directions
These results generate a number of research questions that could
be tested in future studies. First, this research demonstrates that
predictions derived from computational and theoretical research
on the human connectome can help to advance our understanding
of how focal brain lesions influence cognition. This work also
highlights the utility of the lesion method in evaluating construct
validity among various network importance measures as they re-
late to cognition. Additionally, these data show the emerging
possibility of how network neuroscience and connectomics can
contribute to clinical advances. Cognitive abilities after brain
damage are closely related to quality of life and survival (47–49).
Our findings indicate that edge density can be used to predict the
likelihood of cognitive impairments, above and beyond the pre-
dictive utility of well-established predictors like lesion volume. As
such, this information could be incorporated into prognostic tools
to more accurately predict cognitive outcomes after an acquired
brain lesion, helping to inform treatment and rehabilitation plans
for patients with focal brain damage.

Conclusion
In this study, we examined whether brain lesion location relative
to measures of “hubness” derived from the functional and
structural connectome of healthy participants were associated
with general cognitive impairment. We found that, across two
distinct patient cohorts, lesions involving densely connected
white matter regions were associated with impaired cognitive
performance to a greater extent than lesions of highly connected
gray matter regions. These findings serve to underscore the im-
portance of white matter in supporting cognitive processing, and
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how measures of hubness can be leveraged to better understand
cognitive outcomes after brain lesions.

Materials and Methods
Participants. The primary analysis included 402 individuals with focal brain
lesions from the Iowa Cognitive Neuroscience Patient Registry. Demographic
information is presented in SI Appendix, Table S6. Each individual had de-
tailed neuropsychological testing and structural neuroimaging with manual
delineation of the lesion boundaries. Patients with focal brain lesions have
been inducted into the Iowa registry for more than three decades. These
patients were screened to exclude individuals with a history of learning
disabilities, psychiatric disorders, substance abuse, premorbid personality
disorders, developmental epilepsy, and other neurological conditions not
related to their focal lesion (50). Each participant included in the current
analysis also had 1) a focal brain lesion with visible boundaries evident from
research-quality structural imaging performed in the chronic epoch (>3 mo
since lesion onset), 2) lesion onset at age 18 or older, and 3) test scores for at
least 75% of the selected neuropsychological assessments listed in SI Ap-
pendix, Table S7. All participants provided informed consent for involve-
ment in research. In accordance with federal and institutional guidelines, all
procedures were approved by the University of Iowa Institutional Review
Board and are in accordance with the Declaration of Helsinki.
Assessment of cognitive outcomes. A comprehensive neuropsychological as-
sessment was completed using the standard procedures of the Benton
Neuropsychology Laboratory (SI Appendix, Table S7) (51). When a patient
had more than one recorded test score, we selected the score most con-
temporaneous with the date of the patient’s neuroimaging. Patients’ scores
for each assessment were adjusted for age using available normative and
metanormative data. The age-corrected scores were then standardized onto
the same scale using a Z-transformation. Missing assessment scores were

imputed using multiple imputation by chained equations using the MICE
package available in R (52, 53).

A measure of cognitive function was estimated for each individual using
structural equation modeling, as used previously by our group (details pro-
vided in SI Appendix). The Z-transformed scores drawn from 17 neuro-
psychological tests were evaluated in a hierarchical model of cognitive
abilities to estimate a latent variable of general cognitive ability (g) that
explained variance across specific cognitive domains of visuospatial
ability, learning/memory, processing speed, crystallized intelligence, and
working memory.
Neuroimaging and lesion analysis. Structural neuroimaging was acquired at least
three months after lesion onset, and lesion boundaries were segmented
manually for all 402 scans according to standard procedures (54, 55). For scans
prior to 2006, the lesion volume was traced directly onto a template brain
upon visualizing the three-dimensional anatomy of the lesion on the sub-
ject’s scan using Brainvox and MAP-3 techniques (55, 56). With improve-
ments in the accuracy of methods to coregister lesioned brains to a
template, lesions since 2006 have been manually traced directly on the na-
tive T1-weighted scans using FSL (57) and then transformed to MNI152
space. Because lesions negatively affect the accuracy of the transformation
to MNI space, we used enantiomorphic normalization, which extracts the
voxel intensities from the nondamaged homolog of the lesion volume and
inserts it in place of the manually defined lesion mask. As such, normal voxel
intensity values were artificially inserted into the lesion space for the pur-
pose of transforming the brain. For bilateral lesions, the lesion mask was
converted to a cost-function mask and used to aid in spatial normalization
following the methods of Brett et al. (58). The native MRI was then cor-
egistered to the MNI152 1 mm atlas using nonlinear registration using Ad-
vanced Normalization Tools (ANTs) (59), and the spatial transformation warp
was applied to the native lesion mask. The anatomical accuracy of each le-
sion mask was reviewed in both native and MNI space and edited as needed

Table 3. Iowa cohort: Hierarchical linear regressions with log-transformed lesion volume, eigenvector centrality load, gateway
centrality load, subgraph centrality load, weighted degree, within-module degree, and community density predicting post-lesion
g scores

Step and Variable

95% CI for b

B Lower bound Upper bound β t p df R2 ΔR2 Sig. ΔF AIC

Step 1
Total Lesion Volume (log mm3) −0.119 −0.179 −0.059 −0.193 −3.926 <0.001 400 0.035 0.037 <0.001 −80.006

Step 2
Total Lesion Volume (log mm3) −0.044 −0.116 0.027 −0.072 −1.219 0.224 399 0.062 0.030 <0.001 −90.525
Eigenvector Centrality Load −0.193 −0.300 −0.086 −0.210 −3.553 <0.001 399 0.062 0.030 <0.001 −90.525

Step 1
Total Lesion Volume (log mm3) −0.119 −0.179 −0.059 −0.193 −3.926 <0.001 400 0.035 0.037 <0.001 −80.006

Step 2
Total Lesion Volume (log mm3) −0.017 −0.102 0.067 −0.028 −0.400 0.689 399 0.058 0.025 0.001 −88.775
Gateway Centrality Load −0.211 −0.337 −0.085 −0.229 −3.291 0.001 399 0.058 0.025 0.001 −88.775

Step 1
Total Lesion Volume (log mm3) −0.119 −0.179 −0.059 −0.193 −3.926 <0.001 400 0.035 0.037 <0.001 −80.006

Step 2
Total Lesion Volume (log mm3) −0.040 −0.112 0.031 −0.066 −1.107 0.269 399 0.064 0.032 <0.001 −91.614
Subgraph Centrality Load −0.202 −0.309 −0.095 −0.220 −3.707 <0.001 399 0.064 0.032 <0.001 −91.614

Step 1
Total Lesion Volume (log mm3) −0.119 −0.179 −0.059 −0.193 −3.926 <0.001 400 0.035 0.037 <0.001 −80.006

Step 2
Total Lesion Volume (log mm3) −0.010 −0.094 0.073 −0.017 −0.241 0.810 399 0.063 0.030 <0.001 −90.925
Weighted Degree Load −0.228 −0.352 −0.104 −0.248 −3.610 <0.001 399 0.063 0.030 <0.001 −90.925

Step 1
Total Lesion Volume (log mm3) −0.119 −0.179 −0.059 −0.193 −3.926 <0.001 400 0.035 0.037 <0.001 −80.006

Step 2
Total Lesion Volume (log mm3) −0.019 −0.102 0.064 −0.030 −0.444 0.657 399 0.059 0.027 0.001 −89.240
Within-Module Degree Load −0.211 −0.335 −0.088 −0.230 −3.363 0.001 399 0.059 0.027 0.001 −89.240

Step 1
Total Lesion Volume (log mm3) −0.118 −0.178 −0.058 −0.191 −3.867 <0.001 395 0.034 0.036 <0.001 −80.006

Step 2
Total Lesion Volume (log mm3) −0.023 −0.108 0.061 −0.037 −0.537 0.592 393 0.074 0.044 <0.001 −86.189
Community Density Load −0.202 −0.330 −0.073 −0.215 −3.085 0.002 393 0.074 0.044 <0.001 −86.189

Note: R2 represents adjusted R2. AIC = Akaike Information Criterion.
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by a neurologist blinded to the cognitive data. The overlap map of all lesions
in the Iowa Cohort is shown in Fig. 1A.
Estimating the level of network disruption caused by the lesion. We estimated the
degree to which each brain lesion disrupted brain networks using brain-wide
maps of edge density and participation coefficient. Edge density is a simple
count of the number of structural edges that pass through a given voxel,
derived from diffusion tensor imaging (18, 19). For this analysis, we used an
average edge density map produced using diffusion-weighted imaging and
structural MRIs from 10 individuals, each scanned twice (Fig. 1B). Imaging
was performed on a 3T Siemens TIM Trio MR scanner with a 32-channel
phased-array radiofrequency head coil. Axial rapid-acquisition gradient-

echo (MPRAGE) T1-weighed sequence (echo time [TE] =1.64 ms, repetition
time [TR] = 2,530 ms, inversion time [TI] = 1,200 ms, flip angle of 7°) with a
256 mm field of view (FOV), and 160 1.0 mm contiguous partitions at a 256 ×
256 matrix was used for the anatomical imaging. Diffusion-weighted images
(b = 1,000 s/mm2, 30 directions) were collected with a multislice 2D single-
shot twice-refocused spin-echo echo-planar sequence, the iPAT (integrated
Parallel Acquisition Techniques) technique for parallel imaging with a re-
duction factor of 2; NEX (number of excitations) = 1; interleaved 2 mm axial
sections with no gap; in-plane resolution of 2 × 2 mm with a 128 × 128
matrix; and a FOV of 256 mm. The TE and TR were 80 and 10,000 ms, re-
spectively. The brain tissue was extracted from surrounding tissues, and

Fig. 1. Lesion overlaps and network measures. Overlap map of all participants’ lesions in (A) the Iowa cohort. The distribution of edge density and par-
ticipation coefficient are represented in B and C, respectively. Validation analyses were carried out in the WU cohort (D). The images are presented in
radiological orientation.
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motion and eddy current correction was performed with FSL’s linear regis-
tration tool FLIRT. The fractional anisotropy diffusion image was registered
to the T1 using a 12 parameter linear registration with the b = 0 s/mm2 as
the reference. Parcellation of 68 cortical and 14 subcortical gray matter
regions were delineated using FreeSurfer and the Desikan–Killiany atlas
applied to the T1 sequence (60). Probabilistic tractography was then per-
formed with probtrackx2 (61), with 1,000 streamlines from each parcel-
lated voxel. Direct connections between each seed node and a target node
were selected by excluding streamlines with connections to any of the
other 80 nodes. The connectivity of each node was considered indepen-
dently by performing 82 × 81 = 6,642 tractography runs. Streamlines
representing direction connections between two nodes were binarized,
and the edge density for each individual subject was calculated as the
summation of all binarized streamlines the pass each voxel in the brain.
The final edge density map for this analysis was the average of 20 scans
across 10 subjects, each transformed to a common MNI152 template.
Further details of the calculations can be found in the original publication
by Owen et al. (19). For this study, we summed the edge density values
within the three-dimensional volume of each lesion to generate an edge
density lesion load, and this value was standardized across subjects with a
Z-transformation (Fig. 2).

Participation coefficient was calculated from resting state functional
connectivity MRI (rs-fMRI) data from 303 healthy adults (mean age = 21.28 y,
SD = 2.64; age range = 19 to 27 y; 128 males) that were acquired as part of
the Brain Genomics Superstruct data set (62). Two runs of 6.2 min each were
acquired using a gradient-echo echo-planar imaging sequence with the
following parameters: TR = 3,000 ms; TE = 30 ms; flip angle = 85°; and 3 mm3

isotropic voxels with 47 axial slices. Structural data were acquired using a multi-
echo T1-weighted MPRAGE sequence (TR = 2,200 ms; TE = 1.54 ms [image 1]
through 7.01 ms [image 4]; flip angle = 7°; 1.2 mm3 isotropic voxel).

We replicated our main analyses with two other publicly available rs-fMRI
data sets. This included a cohort of 62 healthy adults (mean age = 23.96 y,
SD = 5.24; age range = 18 to 37 y; 27 males) that was acquired as part of the
Nathan Kline Institute (NKI)-Rockland sample (27) and a cohort of 100
healthy adults (mean age = 29.11 y, SD = 3.66; age range = 22 to 36 y; 46
males) acquired as part of the Human Connectome Project (28). For this
cohort, 9 min and 35 s of rs-fMRI data were acquired using a multiband
gradient-echo echo-planar imaging sequence. For both data sets, subjects
were instructed to stay awake and keep their eyes open.

Functional MRI Data Preprocessing. Image preprocessing was performed with
the Configurable Pipeline for the Analysis of Connectomics software (63).
First, brain images were segmented into white matter, gray matter, and
cerebrospinal fluid (CSF). Rigid body motion correction was then performed
to align each volume to a temporally averaged volume with coregistration
of anatomical and functional data. ANTs were used to register the images to
the MNI152 template using a nonlinear normalization procedure (59). All
images were spatially resampled to a 2 mm voxel resolution, and a nuisance
regression was performed to further reduce nonneural noise and artifacts.

To reduce motion-related artifacts, we used the Friston-24 regressors model
during nuisance regression (64). White matter and CSF signals were
regressed using the anatomical CompCor approach with five components
for each tissue class (65). Linear and quadratic drifts were also removed. Data
were bandpass filtered from 0.009 to 0.08 Hz and scaled to a whole-brain
mean value of 10,000. Next, mean rs-fMRI time series were extracted from
333 cortical regions of interest (66) and concatenated across runs for subjects
with multiple rs-fMRI scans.

We extracted the blood-oxygenation-level–dependent (BOLD) signal us-
ing either the preprocessed signal of each individual voxel or the averaged
voxel-wise BOLD signal within each parcellated subdivision of the cortex and
subcortex. We used these processed data to calculate participation coeffi-

cient (PC) of each brain region. PC was calculated as PC = 1 −   ∑NM

s=1
(Kis
Ki
)2,

where Kiis the sum of connectivity weight of region i, Kisis the sum of con-
nectivity weight between region i and function network s, and NM is the
total number of networks. As such, a region that is connected equally to all
networks will have a value close to 1, while a region that is strongly con-
nected to a single network will have a value closer to 0. PC was plotted in
separate adjacency matrices across subjects and across a range of thresholds
(D = 0.01 to 0.15) to ensure results were not biased by a specific threshold.
The average values across subjects and across thresholds were used to pro-
duce the final PC values. PC was also recalculated separately for follow-up
analyses using a different network parcellation scheme [Yeo 17 network
parcellation of cerebral cortex, basal ganglia, thalamus and cerebellum (24,
25, 26)] and using a voxel-wise approach. The voxel-wise calculations fol-
lowed the same process as detailed above, but images were instead
resampled to a 4 mm3 voxel resolution before rs-MRI time-series were
extracted from individual voxels, and functional connectivity was calculated
between voxels rather than between regions of interest. As was performed
for the edge density maps, PC voxel-wise values were summated within each
lesion to create PC lesion load values, then standardized across individual
lesions using a Z-transformation.
Independent validation. The main hypotheses were also tested in an inde-
pendent validation cohort, which was part of the preregistered analysis. This
was done using previously collected data from 102 individuals with focal
brain lesions from stroke, recruited fromWashington University in St. Louis by
Corbetta and colleagues (WU cohort) (21). Demographic details are described
in SI Appendix, Table S6. Imaging was acquired and cognition was assessed
in these subjects within the first 3 mo following the stroke, as opposed to
the Iowa cohort where imaging and assessments were conducted in the
chronic epoch, 3 mo or more after the lesion onset. Similar to the Iowa
cohort, a large battery of cognitive tests was administered to the WU cohort
(SI Appendix, Table S7), and a similar process was used to calculate g with
structural equation modeling—after correcting scores for age, imputing
missing scores (<1% of data), and standardizing to a common Z-scale. Lesion
segmentation was performed on the subject’s MRI scan and transformed to
MNI152 space, with anatomical review performed by a neurologist as de-
scribed previously (21). The distribution of lesions is shown in Fig. 1A. All
participants provided informed consent for involvement in research, and all
procedures were approved by the Institutional Review Boards in accordance
with the Declaration of Helsinki.
Statistical analyses. Our analyses were preregistered on the Open Science
Framework and included three hierarchical linear regressions (models 1
through 3) to test the three main hypotheses. We hypothesized that, above
and beyond variance predicted by lesion volume 1) densely connected white
matter regions defined by high edge density lesion load would predict
greater cognitive impairment, 2) highly connected gray matter regions de-
fined by high participation coefficient lesion load would predict greater
cognitive impairment, and 3) a combined model that included both edge
density and participation coefficient lesion load would predict more variance
in cognitive outcome than either variable alone and that edge density would
predictmore variance than participation coefficient. In each regressionmodel
the g score estimate of cognitive impairment was the outcome variable and
lesion volume was entered as the first step. Higher lesion volume has been
associated with worse cognitive impairment, and thus we attempted to
covary for this variable in step 1 (42–44). Model 1 was the most compre-
hensive and included both edge density and participation coefficient lesion
load in step 2, whereas model 2 and model 3 only included participation
coefficient lesion load and edge density lesion load in step 2, respectively.
For each analysis any patient with a lesion that did not intersect the edge
density and participation coefficient maps were excluded from that
respective analysis.
OSF preregistration. As noted, the main hypotheses were preregistered on OSF.
At the time of preregistration, the lesion data and cognitive data existed.

Fig. 2. Lesion load calculation pipeline. Lesions were traced on the patient’s
structural MRI, then transformed to a template brain. The resulting lesions
were then overlaid on the edge density and participation coefficient maps,
which were derived from healthy subjects, and the sum of all voxels within
the lesion volume was calculated.

8 of 9 | PNAS Reber et al.
https://doi.org/10.1073/pnas.2018784118 Cognitive impairment after focal brain lesions is better predicted by damage to structural

than functional network hubs

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
25

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018784118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018784118/-/DCSupplemental
https://doi.org/10.1073/pnas.2018784118


www.manaraa.com

These data have accrued over a period of several years andwere not collected
prospectively for this study specifically. At the time of the preregistration, we
had not conducted any analyses or testing of our hypotheses with regard to
edge density and participation coefficient maps.

Data Availability. Anonymized .csv data have been deposited in Open Science
Framework (https://osf.io/6a7tq/?view_only=3c7a0ee0a3834633bb9d30837118c31c).

ACKNOWLEDGMENTS. We thank Dr. Maurizio Corbetta for supplying the
secondary data set used in this analysis, Dr. Eva M. Palacios for helping with the
edge density data, and Dr. Olaf Sporns for helpful discussions and guidance. This
study was supported by the National Institute of Neurological Disorders and
Stroke RO1-NS114405, RO1-MH122613, P50 MH094258, the National Institute
of Mental Health-R21MH120441, the National Institute of General Medical
Sciences (T32MH19113-27), and the Roy J. Carver Charitable Trust. This work
was conducted, in part, on an MRI instrument funded by 1S10OD025025-01.

1. M. P. van den Heuvel, O. Sporns, Rich-club organization of the human connectome.
J. Neurosci. 31, 15775–15786 (2011).

2. O. Sporns, Contributions and challenges for network models in cognitive neurosci-
ence. Nat. Neurosci. 17, 652–660 (2014).

3. M. A. Bertolero, B. T. T. Yeo, D. S. Bassett, M. D’Esposito, A mechanistic model of
connector hubs, modularity and cognition. Nat. Hum. Behav. 2, 765–777 (2018).

4. C. Gratton, E. M. Nomura, F. Pérez, M. D’Esposito, Focal brain lesions to critical lo-
cations cause widespread disruption of the modular organization of the brain.
J. Cogn. Neurosci. 24, 1275–1285 (2012).

5. A. Griffa, P. S. Baumann, J.-P. Thiran, P. Hagmann, Structural connectomics in brain
diseases. Neuroimage 80, 515–526 (2013).

6. D. E. Warren et al., Network measures predict neuropsychological outcome after
brain injury. Proc. Natl. Acad. Sci. U.S.A. 111, 14247–14252 (2014).

7. J. C. Griffis, R. Nenert, J. B. Allendorfer, J. P. Szaflarski, Damage to white matter
bottlenecks contributes to language impairments after left hemispheric stroke.
Neuroimage Clin. 14, 552–565 (2017).

8. J. C. Griffis, N. V. Metcalf, M. Corbetta, G. L. Shulman, Structural disconnections ex-
plain brain network dysfunction after stroke. Cell Rep. 28, 2527–2540.e9 (2019).

9. J. C. Griffis, N. V. Metcalf, M. Corbetta, G. L. Shulman, Damage to the shortest
structural paths between brain regions is associated with disruptions of resting-state
functional connectivity after stroke. Neuroimage 210, 116589 (2020).

10. K. Caeyenberghs, H. Verhelst, A. Clemente, P. H. Wilson, Mapping the functional
connectome in traumatic brain injury: What can graph metrics tell us? Neuroimage
160, 113–123 (2017).

11. Y. Fang et al., Semantic representation in the white matter pathway. PLoS Biol. 16,
e2003993 (2018).

12. E. D. Fagerholm, P. J. Hellyer, G. Scott, R. Leech, D. J. Sharp, Disconnection of network hubs
and cognitive impairment after traumatic brain injury. Brain 138, 1696–1709 (2015).

13. A. Kuceyeski, J. Maruta, S. N. Niogi, J. Ghajar, A. Raj, The generation and validation of
white matter connectivity importance maps. Neuroimage 58, 109–121 (2011).

14. N. A. Crossley et al., The hubs of the human connectome are generally implicated in
the anatomy of brain disorders. Brain 137, 2382–2395 (2014).

15. Y. He et al., Uncovering intrinsic modular organization of spontaneous brain activity
in humans. PLoS One 4, e5226 (2009).

16. C. J. Honey, O. Sporns, Dynamical consequences of lesions in cortical networks. Hum.
Brain Mapp. 29, 802–809 (2008).

17. D. E. Warren et al., Brain network theory can predict whether neuropsychological out-
comes will differ from clinical expectations. Arch. Clin. Neuropsychol. 32, 40–52 (2017).

18. J. P. Owen, Y. S. Chang, P. Mukherjee, Edge density imaging: Mapping the anatomic
embedding of the structural connectome within the white matter of the human
brain. Neuroimage 109, 402–417 (2015).

19. J. P. Owen, M. B. Wang, P. Mukherjee, Periventricular white matter is a nexus for
network connectivity in the human brain. Brain Connect. 6, 548–557 (2016).

20. M. B. Wang, J. P. Owen, P. Mukherjee, A. Raj, Brain network eigenmodes provide a
robust and compact representation of the structural connectome in health and dis-
ease. PLoS Comput. Biol. 13, e1005550 (2017).

21. M. Corbetta et al., Common behavioral clusters and subcortical anatomy in stroke.
Neuron 85, 927–941 (2015).

22. Y. Li et al., Brain anatomical network and intelligence. PLoS Comput. Biol. 5,
e1000395 (2009).

23. C. Y. Tang et al., Brain networks for working memory and factors of intelligence
assessed in males and females with fMRI and DTI. Intelligence 38, 293–303 (2010).

24. R. L. Buckner, F. M. Krienen, A. Castellanos, J. C. Diaz, B. T. T. Yeo, The organization of
the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol.
106, 2322–2345 (2011).

25. E. Y. Choi, B. T. T. Yeo, R. L. Buckner, The organization of the human striatum esti-
mated by intrinsic functional connectivity. J. Neurophysiol. 108, 2242–2263 (2012).

26. B. T. Yeo et al., The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

27. K. B. Nooner et al., The NKI-rockland sample: A model for accelerating the pace of
discovery science in psychiatry. Front. Neurosci. 6, 152 (2012).

28. D. C. Van Essen et al.; WU-Minn HCP Consortium, The WU-minn human connectome
Project: An overview. Neuroimage 80, 62–79 (2013).

29. J. D. Power, B. L. Schlaggar, C. N. Lessov-Schlaggar, S. E. Petersen, Evidence for hubs in
human functional brain networks. Neuron 79, 798–813 (2013).

30. E. Estrada, J. A. Rodríguez-Velázquez, Spectral measures of bipartivity in complex
networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 046105 (2005).

31. R. Guimerà, L. A. Amaral, Cartography of complex networks: Modules and universal
roles. J. Stat. Mech. 2005, nihpa35573 (2005).

32. G. Lohmann et al., Eigenvector centrality mapping for analyzing connectivity patterns
in fMRI data of the human brain. PLoS One 5, e10232 (2010).

33. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and
interpretations. Neuroimage 52, 1059–1069 (2010).

34. J. Parvizi, Corticocentric myopia: Old bias in new cognitive sciences. Trends Cogn. Sci.
13, 354–359 (2009).

35. M. A. de Reus, V. M. Saenger, R. S. Kahn, M. P. van den Heuvel, An edge-centric
perspective on the human connectome: Link communities in the brain. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 369, 20130527 (2014).

36. B. Cheng et al., Cortical atrophy and transcallosal diaschisis following isolated sub-
cortical stroke. J. Cereb. Blood Flow Metab. 40, 611–621 (2020).

37. M. Duering et al., Acute infarcts cause focal thinning in remote cortex via degener-
ation of connecting fiber tracts. Neurology 84, 1685–1692 (2015).

38. A. Kuceyeski, H. Kamel, B. B. Navi, A. Raj, C. Iadecola, Predicting future brain tissue loss
from white matter connectivity disruption in ischemic stroke. Stroke 45, 717–722 (2014).

39. S. Marek et al., Towards reproducible brain-wide association studies. bioRxiv [Pre-
print] (2020). 10.1101/2020.08.21.257758 (Accessed 15 January 2021).

40. S. R. Cox, S. J. Ritchie, C. Fawns-Ritchie, E. M. Tucker-Drob, I. J. Deary, Structural brain
imaging correlates of general intelligence in UK Biobank. Intelligence 76, 101376 (2019).

41. L. Puy et al.; GRECogVASC Study Group, Neuroimaging determinants of poststroke
cognitive performance. Stroke 49, 2666–2673 (2018).

42. K. S. Lashley, Brain mechanisms and intelligence: A quantitative study of injuries to
the brain. JAMA 94, 210 (1930).

43. T. Babikian et al., Susceptibility weighted imaging: Neuropsychologic outcome and
pediatric head injury. Pediatr. Neurol. 33, 184–194 (2005).

44. C. Beaulieu et al., Longitudinal magnetic resonance imaging study of perfusion and
diffusion in stroke: Evolution of lesion volume and correlation with clinical outcome.
Ann. Neurol. 46, 568–578 (1999).

45. A. Irimia, J. D. Van Horn, Systematic network lesioning reveals the core white matter
scaffold of the human brain. Front. Hum. Neurosci. 8, 51 (2014).

46. J. Alstott, M. Breakspear, P. Hagmann, L. Cammoun, O. Sporns, Modeling the impact
of lesions in the human brain. PLoS Comput. Biol. 5, e1000408 (2009).

47. J. B. Hochstenbach, P. G. Anderson, J. van Limbeek, T. T. Mulder, Is there a relation
between neuropsychologic variables and quality of life after stroke? Arch. Phys. Med.
Rehabil. 82, 1360–1366 (2001).

48. V. I. Kwa, M. Limburg, R. J. de Haan, The role of cognitive impairment in the quality of
life after ischaemic stroke. J. Neurol. 243, 599–604 (1996).

49. V. Zietemann et al., Early MoCA predicts long-term cognitive and functional outcome
and mortality after stroke. Neurology 91, e1838–e1850 (2018).

50. E. Keifer, D. Tranel, A neuropsychological investigation of the Delis-Kaplan executive
function system. J. Clin. Exp. Neuropsychol. 35, 1048–1059 (2013).

51. D. Tranel, “The Iowa-Benton school of neuropsychological assessment” in Neuro-
psychological Assessment of Neuropsychiatric and Neuromedical Disorders, I. Grant,
K. M. Adams, Eds. (Oxford University Press, New York, 2009), pp. 66–83.

52. S. v. Buuren, K. Groothuis-Oudshoorn, mice: Multivariate imputation by chained
equations in R. J. Stat. Softw. 45, 1–68 (2010).

53. R. C. Team, R: A Language and Environment for Statistical Computing (R Foundation
for Statistical Computing, 2013).

54. T. J. Abel et al., The cognitive and behavioral effects of meningioma lesions involving
the ventromedial prefrontal cortex. J. Neurosurg. 124, 1568–1577 (2016).

55. R. J. Frank, H. Damasio, T. J. Grabowski, Brainvox: An interactive, multimodal visualization
and analysis system for neuroanatomical imaging. Neuroimage 5, 13–30 (1997).

56. H. Damasio, R. Frank, Three-dimensional in vivo mapping of brain lesions in humans.
Arch. Neurol. 49, 137–143 (1992).

57. S. M. Smith et al., Advances in functional and structural MR image analysis and im-
plementation as FSL. Neuroimage 23, S208–S219 (2004).

58. M. Brett, A. P. Leff, C. Rorden, J. Ashburner, Spatial normalization of brain images
with focal lesions using cost function masking. Neuroimage 14, 486–500 (2001).

59. B. B. Avants, C. L. Epstein, M. Grossman, J. C. Gee, Symmetric diffeomorphic image
registration with cross-correlation: Evaluating automated labeling of elderly and
neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

60. R. S. Desikan et al., An automated labeling system for subdividing the human cerebral
cortex onMRI scans into gyral based regions of interest.Neuroimage 31, 968–980 (2006).

61. T. E. J. Behrens, H. J. Berg, S. Jbabdi, M. F. S. Rushworth, M. W. Woolrich, Probabilistic
diffusion tractography with multiple fibre orientations: What can we gain? Neuro-
image 34, 144–155 (2007).

62. A. J. Holmes et al., Brain Genomics Superstruct Project initial data release with
structural, functional, and behavioral measures. Sci. Data 2, 150031 (2015).

63. C. Craddock et al., Towards automated analysis of connectomes: The configurable
pipeline for the analysis of connectomes (c-pac). Front. Neuroinform. 42, 10.3389
(2013).

64. K. J. Friston, S. Williams, R. Howard, R. S. J. Frackowiak, R. Turner, Movement-related
effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996).

65. Y. Behzadi, K. Restom, J. Liau, T. T. Liu, A component based noise correction method
(CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007).

66. E. M. Gordon et al., Generation and evaluation of a cortical area parcellation from
resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

Reber et al. PNAS | 9 of 9
Cognitive impairment after focal brain lesions is better predicted by damage to structural
than functional network hubs

https://doi.org/10.1073/pnas.2018784118

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
25

, 2
02

1 

https://osf.io/6a7tq/?view_only=3c7a0ee0a3834633bb9d30837118c31c
https://doi.org/10.1073/pnas.2018784118

